log(n)) algorithm for sorting by reciprocal translocations

نویسندگان

  • Michal Ozery-Flato
  • Ron Shamir
چکیده

We prove that sorting by reciprocal translocations can be done in O(n3/2 √ log(n)) for an n-gene genome. Our algorithm is an adaptation of the algorithm of Tannier, Bergeron and Sagot for sorting by reversals. This improves over the O(n3) algorithm for sorting by reciprocal translocations given by Bergeron, Mixtacki and Stoye.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An O(n3/2sqrt(log n)) Algorithm for Sorting by Reciprocal Translocations

We prove that sorting by reciprocal translocations can be done in O(n p log(n)) for an n-gene genome. Our algorithm is an adaptation of the Tannier et. al algorithm for sorting by reversals. This improves over the O(n) algorithm for sorting by reciprocal translocations given by Bergeron et al.

متن کامل

Sorting by Reciprocal Translocations via Reversals Theory

The understanding of genome rearrangements is an important endeavor in comparative genomics. A major computational problem in this field is finding a shortest sequence of genome rearrangements that transforms, or sorts, one genome into another. In this paper we focus on sorting a multi-chromosomal genome by translocations. We reveal new relationships between this problem and the well studied pr...

متن کامل

An In-Place Sorting Algorithm Performing O(n log n) Comparisons and O(n) Data Moves

In this paper we give a positive answer to the long-standing problem of finding an in-place sorting algorithm performing O(n log n) comparisons and O(n) data moves in the worst case. So far, the better in-place sorting algorithm with O(n) moves was proposed by Munro and V. Raman. Their algorithm requires O(n) comparisons in the worst case, for any ǫ > 0. Later, Katajainen and Pasanen discovered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009